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Anghel*, Phil Schembri3, Saryu Fensin?
IMST-8, Los Alamos National Laboratory, ?University of Wisconsin-Madison Department of
Material Science and Engineering, 3W-13, Los Alamos National Laboratory

Introduction

Weapons Test Engineering groups at LANL are responsible for testing and simulating weapon
assemblies and subassemblies in support of qualification and certification of nuclear weapon
systems. The complex nature of the assemblies themselves coupled with the loading environments,
gives rise to low confidence and high uncertainties in the interpretation of both experimental and
simulated results. In an effort to reduce these uncertainties, a project was started at LANL to perform
focused and systematic experiments combined with simulations to increase confidence in both
arenas. A key goal of the work performed under the Delivery Environments (DE) Testbeds to
Reduce Uncertainties in Simulations and Tests TRUST program, focuses on identifying and
minimizing sources of uncertainty associated with experimental and computational techniques.
Specifically, with the above as motivation, a measurement procedure was developed by MST-8 to
perform thermal conductivity measurements on cylinders of both similar and dissimilar metallic
systems as a function of loading conditions and varying material interface morphologies between
these components. The title of the work package for this work is “Contact Thermal Conductance
(CTC)”. The main goal of the measurements performed under the 2021 CTC work package was to
apply the procedures developed under the 2020 work package and perform measurements to provide
a dataset that can be used to test W-13 models currently being developed. Specifically, the CTC
measurements were performed while material were under constant loads of 15, 500 and 5000N, in
triplicate, for 3 different material combinations: 304L Stainless Steel-304L Stainless Steel,
Aluminum-Aluminum and 304L Stainless Steel-Aluminum. The interfaces of the materials tested
consisted of 2 different nominal targeted surface finishes of 0.8 and 1.6 microns, the measured
finishes will be listed in a later section. A single targeted temperature gradient (approximately 20°C)
across the experimental assembly was initially adjusted in the 15 N loading condition and the cold
side of the experiment fixed at -75°C based on the cryogenic controller for all measurements. Tuning
of the targeted temperature gradient across material interface was done via controlling the heated



side of the test assembly thereby keeping the variables at a minimum. These parameters were fixed
and used in the subsequent measurements using forces of 500 and 5000N, respectively. The results
obtained from these measurements will be used to validate predictive models and validation
simulation efforts with a focus on uncertainty. In this report henceforth, the experimental
methodology developed in FY 2020 will be applied, although the measurements have been relocated
to a new dedicated test system to measure thermal conductivity across material interfaces.

Specimen preparation for measurements

1. Experimental specimen details and machining

The specimens for conductivity measurements were obtained from rods of certified Valbruna 304L
stainless steel (SS) and Hydro 6061 Aluminum (Al) base materials. Certification material test reports
(CMRT) for each material are attached in the supplementary section of this report. Specimens for
CTC measurements were machined as right cylinders with nominal dimensions of 100 mm in length
and 25.4 mm in diameter. Holes were drilled to specific depths of 12.7 mm for the thermocouples
along the length of the rods at the specified locations as shown in Fig. 1. The thermocouple (Tc)
hole spacing is indicated by hole center marks “+” and the hole depths are represented by dotted
lines in Fig. 1. Specific surface finishes of 1.6 um and 0.8 um were machined on the sample interface
ends. The nominal dimensional specifications requested for machining are shown in Fig. 1.
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Figure 1. Machine drawing showing the nominal geometric specifications for test specimens,
dimensions are in mm. For clarity, critical tolerances are called out in both mm and in.

After machining, the CTC specimen’s Tc spacing were carefully measured using a tool maker’s
microscope and the final attained surface finish was measured using a Mahr Mobile Surface
Roughness Tester, model MarSurf PS10 to provide an accurate representation of the samples to
decrease uncertainty in the predictive modeling efforts. Fig. 2. shows a diagram of the three CTC

specimen combinations Tc spacing along with Table 1 which lists the Tc spacing and the Tc distance
across the samples with respect to the cold and hot interface.
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Figure 2. Measured Tc spacing for the nominal 1.6um surface finish SS-SS, Al-Al and Al-SS test
specimens used for CTC measurements.



Table 1: Measured Tc spacing’s and Tc distances from the cold and hot interface for the three
nominal 1.6um interface surface finish test specimen series

304L Stainless Steel Cold (mm)
cold interface to TC6 TC6to TC5 | TC5t0 TC4 | TC4to TC3 | TC3to cold platen
1.39 32.51 32.00 32.55 1.60
cold interface (Cl)to TC6 | CIto TC5 | ClttoTC4 | Cltto TC3 Cl to cold platen
1.39 33.90 65.90 98.45 100.04
304L Stainless Steel Hot (mm)
hot interface to TC7 TC7to TC8 | TC8to TC9 | TC9to TC10 | TC10 to hot platen
1.50 32.54 32.01 32.52 1.48
hot interface (HI)to TC7 | HIto TC8 HI to TC9 Hl to TC10 HI to hot platen
1.50 34.04 66.05 98.57 100.05
Aluminum 6061 Cold (mm)
cold interface to TC6 TC6to TC5 | TC5t0 TC4 | TC4to TC3 | TC3to cold platen
1.31 32.51 32.02 32.46 1.74
cold interface (Cl)to TC6 | CItto TC5 | CIttoTC4 | Clto TC3 Cl to cold platen
1.31 33.83 65.85 98.31 100.05
Aluminum 6061 Hot (mm)
hot interface to TC7 TC7to TC8 | TC8to TC9 | TC9to TC10 | TC10 to hot platen
1.37 32.44 32.00 32.49 1.70
hot interface (HI)to TC7 | HIto TC8 HI to TC9 Hl to TC10 HI to hot platen
1.37 33.81 65.81 98.30 100.00
304L Stainless Steel Cold (mm)
cold interface to TC6 TC6t0o TC5 | TC5t0 TC4 | TC4to TC3 | TC3to cold platen
1.39 32.51 32.00 32.55 1.60
cold interface (Cl)to TC6 | Clto TC5 Clto TC4 Cltto TC3 Cl to cold platen
1.39 33.90 65.90 98.45 100.04
Aluminum 6061 Hot (mm)
hot interface to TC7 TC7to TC8 | TC8to TC9 | TC9to TC10 | TC1O0 to hot platen
1.37 32.44 32.00 32.49 1.70
hot interface (HI)to TC7 | HIlto TC8 HIto TC9 Hl to TC10 HI to hot platen
1.37 33.81 65.81 98.30 100.00
Premeasurement setup

1. Experimental setup

The procedure for the measurement setup is discussed in the following sections in the order they
were performed: mounting of the test specimens in the experimental measurement setup (consisted
of a MTS 858 Mini Bionix II® load frame with heated and cooling platens), instrumentation of the
experimental test specimens with temperature probes and lastly, application of insulation around the
test specimens prior to application of the temperature gradient. Much of the precise details were
omitted in this report in the fact that they were discussed in detail in the previous report. Only new
details pertaining to the 2021 system and associated measurements will be discussed as needed. A
16-channel Omega thermocouple data logger (model OM-DAQXL-2-EU8) using Omega k-type



thermocouples (model TIC36-CASS-020U-6) was used to log the temperature of the specimens and
collect the raw load vs. displacement signals during measurements. After the measurements on the
304L SS specimens were completed, the original Omega thermocouple (Tc) data logger
malfunctioned and was replaced with an almost identical data logger (model OM-DAQXL-2-NA).
To apply the load along the experimental specimen, a MTS 858 servo-hydraulic test system equipped
with a resistance heated upper platen and a liquid nitrogen cooled lower platen was used. In contrast
to the previous system, the current mechanical test frame applied the load from the top down in
contrast to the first-generation CTC setup. Next, the Tc¢’s were placed into the predrilled locations
using silver paste to ensure good contact and increase system responsiveness. The Tc¢’s were marked
with fiducials corresponding to the callout hole depths. Special care was taken to make sure the Tc’s
were inserted down into the entire hole depth to maintain reproducibility for simulations. Finally,
insulation was applied around the test specimens. A generic setup photo including instrumented
samples in position and under load along with a schematic listing of key components is shown in
Fig. 3.
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Figure 3. A photo of the experimental setup showing details prior to application of insulation. The
experimental testbed ready for measurements is shown schematically on the rightmost portion of
the image.



Experimental measurement

2. Force and temperature gradient establishment

Following the pre-measurement setup discussed previously, the next step is preparing the specimens
for the respective experiments. One thing to note, the lowest force of 0.03 MPa (15N) corresponded
to the least applied force that would provide enough thermal contact between the heating/cooling
platens and samples while under stable load control from the MTS 858 system. A flowchart showing

the experiment measurement work flow is shown in Fig 3.

Figure 4. Flowchart showing the typical CTC experimental measurement work flow for performing

CTC measurements.
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Post-Measurement

Upon completion of the CTC test measurements, data was compiled and prepared for
plotting. To archive and have a repository for viewing the tests performed and uploaded to
TIMS, temperature gradient along the samples (°C) vs. time (s) and force (N)/displacement
(mm) (FD) vs. time (s) plots for SS-SS, Al-Al and Al-SS couples are presented side by
side, in groups of three, based on the individual loading conditions of 15,500 and 5000N
used. The plots presented are grouped by loading condition for temperature gradient
evolution versus time and show a full measurement range with all the sample Tc signals
along with a magnified region below. The magnified lower plot shows the region with the
two Tc’s closest to the cold and hot interface where C6 is the Tc closest to the cold
interface and C7 is the Tc closest to the hot interface as indicated and circled in Fig. 5.
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Figure 5. Schematic showing the Tc names and locations used to measure the temperature
gradients along the sample lengths. The circled region shows Tc C6 and C7 which are the
sensors measuring the AT across the hot and cold side interface.

Pertaining to the magnified plots for both sets (Tc’s and FD) the magnified regions show a
snapshot of the dwell stabilization period about 500 s before the abrupt behavior signaling
when the cooling and heating sources were instantaneously turned off. The point in the
measurements when the heating and cooling was turned off varied from measurement to



measurement. Similar to the Tc vs time plots, the FD plots are shown as the full data range
on top with a magnified view below highlighting the region before the cooling and heating
sources were turned off. The Y1 axis is force (N) and the Y2 is displacement (mm), with
the force signals circled in the magnified view to easily distinguish it from the displacement
signals. In both sets of plots the period in time showing the magnified regions is outline by
a box on the full plot versions. The main regions of interest in these measurements for W-
13 modeling and simulations efforts was achieved at a point in the measurement when the
temperature had equilibrated and the specimens were undergoing a cumulative change in
displacement of 2 um or less. It is in this final region before turning off the heating and
cooling where W-13 calculations will be targeted as highlighted in the following magnified
plots. In the follow pages, Figs. 6,7,8 (a-c) are plotted as follows:
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Figures 6 a-c. Measurements plotted in triplicate for SS-SS specimens with nominal 1.6pum surface
finish. The upper left plots are the full range Tc measurements (°C) vs. time with the lower left
showing a magnified view before the heating and cooling sources and terminated. The upper right
most plots show load (N) and displacement (mm) vs. time(s). Figures 6 a-c correspond to 15, 500
and 5000 N loading conditions. A magnified view for each of the upper plots are shown below them.
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Figure 7c. Temperature as a function of time correspond to 5000 N force between Al-AL.
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Figure 7 a-c. Measurements plotted in triplicate for Al-Al specimens with nominal 1.6pum surface
finish. The upper left plots are the full range Tc measurements (°C) vs. time with the lower left
showing a magnified view before the heating and cooling sources and terminated. The upper right
most plots show load (N) and displacement (mm) vs. time(s). Figures 7 a-c correspond to 15, 500
and 5000 N loading conditions. A magnified view for each of the upper plots are shown below them.
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Figure 8c. Temperature as a function of time correspond to 5000 N force between AIH-SSC.

Figure 8 a-c. Measurements plotted in triplicate for AIH-AIC specimens with nominal 1.6pum surface
finish. The upper left plots are the full range Tc measurements (°C) vs. time with the lower left
showing a magnified view before the heating and cooling sources and terminated. The upper right
most plots show load (N) and displacement (mm) vs. time(s). Figures 8 a-c correspond to 15, 500
and 5000 N loading conditions. A magnified view for each of the upper plots are shown below them.

In the early measurements (SS-SS), some aberrations were present in measurement plots in the path
to establishing a temperature gradient. The sources of aberrations were due to a faulty temperature
controller and problems with facility cooling system. Although these aberrations are not pleasing to
data, the period when they occurred are not in the time-frame where data is extracted for analysis.
These problems were rectified, as is apparent in the stability of the measurements as they continued.
Also, to note in the early tests there was some iterative changes in the initial parameters for the
temperatures used to establish the temperature gradients, after which consensus in the setup
parameters was finalized and maintained through future measurements. To illustrate the consistency
in measurements performed in triplicate, Table 2. shows the Tc temperature signals from C6 and C7
(taken from 500 s before the cooling and heating was turned off) and the average calculated
temperature between them and across the interface.

Table 2: Tc measurement data at steady state showing the average temperature in between the two
Tc’s above and below the interface, C6 and C7.

C6 Temperature C7 Temperature average AT across
Al-AL °C °C interface °C
20210729-Al-1.6um-15N-4-TC 13.6 27.2 20.4
20210802-Al-1.6um-15N-5-TC 115 24.5 18
20210602-Al-1.6um-15N-6-TC 11.1 23.7 17.4
20210804-Al-1.6um-500N-1-TC 13.2 21.1 17.15
20210805-Al-1.6um-500N-2-TC 13.3 21.1 17.2
20210806-Al-1.6um-500N-3-TC 13.7 21.6 17.65
20210809-Al-1.6um-5000N-1-TC 17.1 23.8 20.45
20210810-Al-1.6um-5000N-2-TC 17.2 23.9 20.55
20210811-Al-1.6um-5000N-3-TC 17.2 23.9 20.55
C6 Temperature C7 Temperature AT across interface
SS-SS °C °C °C
20210601-SS-1.6um-15N-3e 17.6 23 20.3
20210601-SS-1.6um-15N-3h 16.7 21.8 19.25
20210601-SS-1.6um-15N-3g 16.1 21.6 18.85
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20210614-SS-1.6um-500N-2 14.4 19.5 16.95
20210614-SS-1.6um-500N-3 14.4 19.1 16.75
20210616-SS-1.6um-500N-4 14.3 19.6 16.95
20210617-SS-1.6um-5000N-1 15.3 19.2 17.25
20210621-SS-1.6um-5000N-2 15.2 19 17.1
20210622-SS-1.6um-5000N-3 15.8 19.6 17.7
C6 Temperature C7 Temperature AT across interface

AIH-SSC °C °C °C
20210825-AlH_SSC-1.6um-15N-5-TC 18.4 24.6 215
20210826-AlH_SSC-1.6um-15N-6-TC 18.9 24.9 21.9

20210830-AlH_SSC-1.6um-15N-7-TC 18 24 21
20210831-AlH_SSC-1.6um-500N-1-TC 23.3 27.7 25.5

20210901-AIH_SSC-1.6um-500N-2-TC 23.8 28.2 26
20210902-AlH_SSC-1.6um-500N-3-TC 24.3 28.6 26.45
20210903-AlH_SSC-1.6um-5000N-1-TC 30.9 33.8 32.35
20210907-AlH_SSC-1.6um-5000N-2-TC 30.6 33.6 32.1
20210908-AlH_SSC-1.6um-5000N-3-TC 30.5 334 31.95

As a deliverable for the CTC project, measurement data was required to be uploaded into the
GRANTA/TIMS database for access by project members. Below is a table with the completed
measurement dataset uploaded into the database.

Table 3: Summary of measurements performed and files uploaded into GRANTA/TIMS
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CTC measurement files

Stainless Steel-Stainless Steel

Aluminum-Aluminum

Aluminum H-Stainless Steel C

load vs Temperature, load vs Temperature, load vs Temperature,
displacement load vs displacement load vs displacement load vs
displacement displacement displacement
(raw) (raw) (raw)
15N 15N 15N 15N 15N 15N
20210601-SS- 20210601-SS- 20210729-Al- 20210729-Al- 20210824- 20210824-
15N-3b 15N-3b-tc 16um-15N-4 16um-15N-4-tc | AIH_SSC-16um- | AIH_SSC-16um-
15N-4 15N-4-tc
20210601-SS- 20210601-SS- 20210729-Al- 20210729-Al- 20210824- 20210824-
15N-3c 15N-3c-tc 16um-15N-5 16um-15N-5-tc | AIH_SSC-16um- | AIH_SSC-16um-
15N-5 15N-5-tc
20210601-SS- 20210601-SS- 20210729-Al- 20210729-Al- 20210824- 20210824-
15N-3d 15N-3d-tc 16um-15N-6 16um-15N-6-tc | AIH_SSC-16um- | AlH_SSC-16um-
15N-6 15N-6-tc
20210601-SS- 20210601-SS- 20210824- 20210824-
15N-3e 15N-3e-tc AIH_SSC-16um- | AIH_SSC-16um-
15N-7 15N-7-tc
20210601-SS- 20210601-SS-
15N-3g 15N-3g-tc
500N 500N 500N 500N 500N 500N
20210611-SS- 20210611-SS- 20210804-Al- 20210804-Al- TRST ALH-SSC | TRST ALH-SSC
16um-500N-1 16um-500N-1-tc 16um-500N-1 16um-500N-1-tc 500N 1.6um-1 500N 1.6um-1-tc
20210611-SS- 20210611-SS- 20210804-Al- 20210804-Al- TRST ALH-SSC | TRST ALH-SSC
16um-500N-2 16um-500N-2-tc 16um-500N-2 16um-500N-2-tc 500N 1.6um-2 500N 1.6um-2-tc
20210611-SS- 20210611-SS- 20210804-Al- 20210804-Al- TRST ALH-SSC | TRST ALH-SSC
16um-500N-3 16um-500N-3-tc 16um-500N-3 16um-500N-3-tc 500N 1.6um-3 500N 1.6um-3-tc
20210611-SS- 20210611-SS-
16um-500N-4 16um-500N-4-tc
5000N 5000N 5000N 5000N 5000N 5000N
20210617-SS- 20210617-SS- 20210809-Al- 20210809-Al- TRST ALH-SSC | TRST ALH-SSC
16um-5000N-1 | 16um-5000N-1-tc | 16um-5000N-1 | 16um-5000N-1-tc | 5000N 1.6um-1 | 5000N 1.6um-1-tc
20210617-SS- 20210617-SS- 20210809-Al- 20210809-Al- TRST ALH-SSC | TRST ALH-SSC
16um-5000N-2 | 16um-5000N-2-tc | 16um-5000N-2 | 16um-5000N-2-tc | 5000N 1.6um-2 | 5000N 1.6um-2-tc
20210617-SS- 20210617-SS- 20210809-Al- 20210809-Al- TRST ALH-SSC | TRST ALH-SSC

16um-5000N-3

16um-5000N-3-tc

16um-5000N-3

16um-5000N-3-tc

5000N 1.6um-3

5000N 1.6um-3-tc

Summary

For the FY 2021 CTC project MST-8 was able to further expand and improve the capability to apply
and measure a set temperature gradient along the length and across the interface of a test specimen
couple while applying a controlled force. During the current project year all 4 quarter deliverables

were met and are shown below:

Table 3: CTC project quarterly deliverables and status

Thermal Contact Conductance (CTC) 2021 quarterly deliverables

Q1. Experiments of expanded material and boundary condition test matrix with

results uploaded to TIMS (FY21 Q1) MST-8

Completed and reported
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Q2. Validation simulations including UQ propagation from experimental Completed and reported
measurements (FY21 Q2) W-13

Q3. Validation experiments with updated boundary conditions with results Completed and reported
uploaded to TIMS (FY21 Q3) MST-8

Completed upon transmission

Q4. Simulation and experimental results comparison and reports (FY21 Q4) W- of this report

13/MST-8

The highlight accomplishments we would like to call attention to are: A predicted displacement
control profile obtained from W-13 simulation results on 304L SS was run by MST-8 in the
measurement platform, this process revealed more work was required to accurately transition from
a simulation predicted profile to measured profiles (discussed in detailed by W-13 in their FY 2021
report). This example shows the strong collaborative and iterative work between W-13 and MST-8.
In FY 2021, a complete dataset of 27 measurements were performed and uploaded to the TIMS
database using fixed temperature gradient profiles, a manuscript by Ben-Naim T. et al. is in
preparation showing mechanical property test data from this project. Lastly, there was strong
utilization of GRANTA/TIMS between the MST-8 and W-13 CTC team.

Supplementary information

1. Certification sheets for materials used in mechanical properties (including OFHC)
and CTC measurements

6061 Aluminum
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2. Thermal Conductivity Measurements

A Transient Plane Source method using a Hot Disk 2500 S Thermal Constants Analyzer was used
to measure thermal conductivity of 304L stainless steel, Aluminum 6061, and Oxygen Free Copper
(OFHC) Cu with certified material test reports (attached at the beginning of this section) using a
Kapton Sensor 5465 [1]. Identical tests were performed on none certified materials and can be seen
in the FY 2020 version the CTC year-end report. The details of the system used are listed in Table
l.

Table I: Hot Disk 2500 Transient Plane Source Specifications

Hot Disc 2500

1 Thermal Conductivity 0.005 to 1800 W/m/K
2 Thermal Diffusivity 0.01 to 1200 mm?/s
3 Measured Time 1 to 2560 seconds
4 Accuracy Better than 5%
5 Temperature Range -253°C to 1000°C
6 With Furnace Up to 750°C [1000°C oxygen free]
7 With Circulator -35°C to 200°C
8 Power requirement Adjusted to the line voltage in the country of use
9 Smallest sample dimension 0.5 mm x 2 mm diameter of square for bulk testing
0.042 mm x 8 mm diameter or square for slab testing
5 mm x 2.5 mm diameter or square for one-dimensional testing
0.01 mm x 22 mm diameter or square for thin-film testing
10 Sensor Type All Kapton, All Mica, All Teflon

Tests were conducted by applying power in watts and holding it constant for a few minutes during
room temperature tests and up to 15 minutes for 200°C measurements. The 5465 sensor was held
between two identical cylinders of the test material with an estimated 0.247 Nm [2] (finger tight)
force as shown in Figure 1.

Hot Disk TPS 7 software was used to conduct the tests and analyze the obtained data. This software
calculates the thermal conductivity using two methods:1) no assumptions about material properties
are made, and 2) literature values for the volumetric specific heat (vCp) in MJ/m3K are used. All
tests were calculated using method 2. Calibration was performed at the beginning of the day using
the test protocol SIS2343 mild steel standards. The test protocol provided by Thermtest Instruments
provides the standard results for thermal conductivity, thermal diffusivity, and heat capacitance,
which were used to compare and prove that the system is functioning properly. Ten tests were
performed for each material type at room temperature (between 20°C to 20.5°C), at -70°C, and at
200°C to obtain statistically relevant data. Samples were taken from the same material cylinder stock
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described previously in the report. The samples were electro discharge machined (EDM) to a right
cylinder that was 1 x 1 inch in diameter and height.

Table I1: Experimental values of thermal conductivity and diffusivity at room temperature (20°C to

20.5°C)

SS 304L SS 304L Al. 6061 Al. 6061 OFHC OFHC

TC (W/mK)  Thermal diffusivity TC Thermal diffusivity TC Thermal diffusivity
Test # (mm?/s) (W/mkK) (mm?/s) (W/mk) (mm?/s)
1 14.25 3.581 174.5 72.76 393.9 114.5
2 14.25 3.58 176.1 72.60 376.8 109.5
3 14.25 3.581 175.7 72.93 378.1 109.9
4 14.25 3.582 176.5 72.62 473.7 137.7
5 14.25 3.581 175.8 74.35 393.7 114.5
6 14.26 3.583 179.9 72.32 405.5 117.9
7 14.25 3.58 175 71.82 435.1 126.5
8 14.25 3.581 173.8 73.00 443.7 129
9 14.25 3.58 176.7 73.17 387.6 112.7
10 14.33 3.601 177.1 72.14 382.5 111.2
Average 14.259 3.583 176.11 72.771 407.06 118.34
Stdev 0.024 0.006 1.590 0.655 31.080 9.040

Table 11 shows the measured thermal conductivity and diffusivity at room temperature from our
work. The thermal conductivity for these materials were calculated using literature values of the
volumetric specific heat were used for measuring the thermal conductivity of Stainless Steel 304,
Aluminum 6061 and the OFHC Cu. The vCp values were calculated by using 3.98 MJ/m3K for
SS304, 2.42 MJ/m3K for Aluminum 6061, and 3.44MJ/m3K for OFHC Cu, respectively. Room
temperature tests were performed on the bench top as seen in Figure 1. Although the temperature
varied from 17°C to 22°C for the room temperature tests for different days of testing, it was constant
for each individual test on each material.

All -70°C, and at 200°C measurements were performed in a SPX model TUJR Environmental Test
Chamber which has a temperature range of -70°C, and at 200°C shown in Figure 2.

To obtain a comparison reading from the chamber monitor thermocouple, which is read on the
controller, a secondary type K thermocouple was placed on top of the samples and read external to
the chamber on a hand-held Omega readout. For all -70°C, and 200°C tests, the secondary
thermocouple was within 4°C of the target temperature. Results for -70°C, and at 200°C are shown
in Tables Il and 1V, respectively. Itis important to note that copper formed an oxide layer at 200°C,
so the readings in this regime might not be reliable.
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Table I11: Experimental values of thermal conductivity and diffusivity at -70°C

SS 304L SS 304L Al. 6061 Al. 6061 OFHC OFHC
TC (W/mk)  Thermal diffusivity TC Thermal diffusivity TC Thermal diffusivity
Test# (mm?s) (W/mk) (mm?/s) (W/mk) (mm?s)
1 11.74 2.949 126 52.05 363.7 105.7
2 11.77 2.957 132.4 54,71 360.4 104.8
3 11.75 2.952 125.2 51.74 362.8 105.5
4 11.72 2.945 132 54.54 360.2 104.7
5 11.7 2.939 121.6 50.25 358.6 104.2
6 11.71 2.942 1255 51.84 354 102.9
7 11.72 2.945 131.2 54.23 358.6 104.3
8 11.67 2.931 127.1 52.51 356.4 103.6
9 11.72 2.944 132.3 54.67 360.4 104.8
10 11.66 2.929 134.4 55.53 360.2 104.7
Average 11.716 2.943 128.8 53.207 359.53 104.5
Stdev 0.032 0.008 3.987 1.650 2.694 0.787
Table IV: Experimental values of thermal conductivity and diffusivity at 200°C
SS 304 SS 304 Al. 6061 Al. 6061 OFHC OFHC
TC (W/mK)  Thermal diffusivity TC Thermal diffusivity TC Thermal diffusivity
Test # (mm?/s) (W/mK) (mm?/s) (W/mKk) (mm?/s)
1 16.41 4,123 170.7 70.55 347 100.9
2 16.87 4.239 184.4 76.21 343.5 99.87
3 16.99 4.268 183.8 75.93 361.1 105.
4 17.00 4,272 180.9 14,77 341.3 99.2
5 17.12 4.203 178.7 73.83 359.5 104.5
6 17.00 4,271 182.8 75.54 349.4 101.6
7 17.14 4.307 174 71.92 383.8 111.6
8 17.27 4,339 194.6 80.41 349.4 101.6
9 17.09 4,295 177.4 73.3 343.5 99.86
10 17.55 4.409 181.3 74.94 350.6 101.9
Average 17.04 4.272 180.86 14.74 352.91 102.6
Stdev 0.28 0.072 6.171 2.55 12.006 3.496

The following table shows measured values at the temperatures used for conductivity measurements
and summarizes the average measured values from Table I, 1l and IV. The measured values are
compared with literature values obtained from the NIST/CRC Properties of Selected Materials at
Cryogenic Temperatures [3]
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Table 1V: Table showing measured thermal conductivities and literature values

Temperature | SS304L TC | NIST SS304L | AI6061 TC | NIST Al6061 | OFHC TC | NIST OFHC

(K,C) (W/mk) TC (W/mK) (W/mk) TC (W/mK) (W/mk) TC (W/mK)
203,-70 11.716 12.72 128.770 136.81 359.530 399.79
293,20 14.259 15.12 176.110 154.35 407.060 392.81
473,200 17.044 19.55 180.860 167.69 352.910 383.41

The slight variations in the current and the reported literature values could be due to 1) pedigree of
the materials involved, 2) assumptions used to calculate the final thermal conductivity and 3) the
measurement technique used. Figure 1 shows the variation of the average thermal conductivity as a
function of temperature. It can be seen that the variations in thermal conductivity are insignificant.
This is consistent with expected and literature results. Additionally, the trends of the measured data
correspond with the trends from the NIST database [3]. In general, for pure metals the thermal
conductivity is due to the free electrons and is directly proportional to the absolute temperature (in
K) and electrical conductivity. However, electrical conductivity decreases as the temperature is
increased. Hence, the thermal conductivity should exhibit only minor increases or decreases in the
ranges measured in this report, which was indeed observed. However, as the temperature approaches
absolute 0, the conductivity decreases rapidly. Many pure metals have a peak in thermal conductivity
between 2 and 10 K.

®304L
@Aluminum 6061

OFHC Copper [

Thermal Conductivity (W/mk)
8

Temperature (K)
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Figure 1. Average thermal conductivity as a function of temperature. Average values from Tables
I1, 11l and 1V were used in this plot along with the calculated standard deviations.

2. Hardness measurements

A Struers DURASCAN 70 hardness testing machine was used to obtain Vickers hardness for the
stainless steel 304, aluminum 6061, and OFHC Cu. The discs were EDM to 0.125 x 1 inch and were
obtained from the same material stock as mentioned in the Specimen preparation for measurements
section above.

To avoid artifacts in the measurements from surface topography, the discs were additionally polished
using 0.04 micron colloidal silica. The Vickers hardness values were measured using a test load of
1 kg for Stainless Steel 304, 0.5 kg for both Aluminum 6061 and Cu, with 10 measurements per
sample that were randomly distributed. The average hardness (MPa) for each material is shown in
Table V. MatWeb Material Property reports the following values for Vickers Hardness for the three
materials, SS304L (129 MPa) [4], Aluminum 6061 (107 MPa) [4], and OFHC copper (50-90 MPa)
[5]. The differences in the reported and measured values could be attributed to the exact material
microstructure. The higher hardness values here could be attributed to material impurities and also
variation in the grain size as compared to the reported data.

Table V: Experimental values of Vickers Hardness
measurements (MPa)

Test # SS304L Al 6061 OFHC
1 252 121 100

2 285 112 96.7

3 296 114 94.7

4 275 109 95.5

5 272 115 100

6 300 126 88.9

7 282 117 91.3

8 263 117 90.1

9 302 126 84.7

10 282 114 95.2

Average 280.9 117.1 93.71
Stdev 15.25 5.37 4.67
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